Solution to Problems \spadesuit -11

Problem A: All the points of a circle are arbitrarily painted in two colors. Does there necessarily exist an isosceles triangle, whose vertices are all the same color, inscribed in the circle?

Answer: Consider an inscribed regular pentagon. At least three of its vertices are on the same color because there are only two colors. Since any three vertices of a regular pentagon form an isosceles triangle, the positive answer to our question follows.

Correct solutions were received from :

(1) Brad Tuttle

POW 11B: **♠**

Problem B: A pentagon is such that each triangle formed by three adjacent vertices has area 1. Find its area.

Answer: Let the pentagon be $\triangle ABCDE$. Triangles $\triangle BCD$ and $\triangle ECD$ have the same area, so B and E are at the same perpendicular distance from the line extending \overline{CD} , so \overline{BE} is parallel to \overline{CD} . The same applies to the other diagonals (each is parallel to the side with which it has no endpoints in common). Let \overline{BD} and \overline{CE} meet at X. Then ABXE is a parallelogram, so $\operatorname{Area}(\triangle BXE) = \operatorname{Area}(\triangle EAB) = 1$. Also

$$\operatorname{Area}(\triangle CDX) + \operatorname{Area}(\triangle EDX) = \operatorname{Area}(\triangle CDX) + \operatorname{Area}(\triangle BCX) = 1,$$

so
$$\operatorname{Area}(\triangle EDX) = \operatorname{Area}(\triangle BCX).$$
 Put
$$\operatorname{Area}(\triangle EDX) = x.$$
 Then

$$\frac{|DX|}{|XB|} = \frac{\operatorname{Area}(\triangle EDX)}{\operatorname{Area}(\triangle BXE)} = \frac{x}{1}$$

and also

$$\frac{|DX|}{|XB|} = \frac{\operatorname{Area}(\triangle CDX)}{\operatorname{Area}(\triangle BCX)} = \frac{1-x}{x}.$$

Hence

$$x^{2} + x - 1 = 0$$
, and $x = \frac{\sqrt{5-1}}{2}$

(we know x > 0, so it cannot be the other root). Hence

 $\begin{aligned} \operatorname{Area}(\triangle ABCDE) &= \\ \operatorname{Area}(\triangle EAB) + \operatorname{Area}(\triangle BXE) + \operatorname{Area}(\triangle BCD) + \operatorname{Area}(\triangle EDX) = \\ 3 + x &= \frac{\sqrt{5} + 5}{2}. \end{aligned}$

Correct solutions were received from :

(1) Brad Tuttle

POW 11B: 🏟